[轉(zhuǎn)載]碳化硅在分布式光伏發(fā)電逆變器上的絕佳應(yīng)用案例
文章作者:poshing 上傳更新:2024-08-06
根據(jù)國際能源署(IEA)2019年10月的報告,到2024年,可再生能源發(fā)電量將增長50%。這意味著全球可再生能源發(fā)電量將增加1200GW,相當(dāng)于美國目前的裝機量。該報告預(yù)測,可再生能源中約有60%將以太陽能光伏(PV)的形式出現(xiàn)。
圖1. 2019 – 2024年按技術(shù)分類的可再生能源產(chǎn)能增長
圖2. 2007 – 2024年分布式光伏產(chǎn)能增長情況
為什么太陽能光伏發(fā)電在可再生能源容量的增長如此重要?一個明顯的原因是太陽能非常容易直接利用,尤其是偏遠(yuǎn)地區(qū)或離網(wǎng)區(qū)域。另一個明顯的原因是太陽能很多,根據(jù)計算,海平面上,每平方米每天可產(chǎn)生1kW電力,如果考慮諸如日/夜周期,入射角,季節(jié)性等因素,每天每平方米或可以產(chǎn)生6kWh電量。
與所有能量轉(zhuǎn)換過程一樣,并非所有輸入太陽能電池的能量都以首選的電形式輸出。實際上,多年來,單晶硅太陽能電池的效率一直徘徊在20%至25%之間。但是,太陽能光伏發(fā)電的機會是如此巨大,以至于數(shù)十年來,研究團隊一直在努力使用日益復(fù)雜的結(jié)構(gòu)和材料來提高電池轉(zhuǎn)換效率,如NREL的這張圖所示。
圖3. 1976年至2020年全球研究太陽能電池的轉(zhuǎn)換效率的進(jìn)展(NREL)(此圖由美國科羅拉多州國家可再生能源實驗室提供)
許多太陽能光伏設(shè)備依靠各種形式的多晶硅或硅、碲化鎘或硒化銅銦鎵的薄膜,轉(zhuǎn)換效率在20%至30%的范圍內(nèi)。單元內(nèi)置在模塊中,這些模塊是太陽能光伏發(fā)電系統(tǒng)的基本單元。
20%-30%是理想狀態(tài),實際上轉(zhuǎn)換效率可能會因各種原因而降低轉(zhuǎn)換效率:降雨,積雪和灰塵沉積,材料老化以及環(huán)境變化,例如由于植被的生長或新建筑物的安裝而增加陰影。
逆變器通過切換直流輸入電流的極性來工作,使其接近交流輸出。開關(guān)頻率越高,轉(zhuǎn)換效率越高。簡單的開關(guān)即可產(chǎn)生方波輸出,可以驅(qū)動負(fù)載,但是諧波會損失更多的電流。因此,逆變器需要平衡開關(guān)頻率以提高效率、工作電壓和功率容量,此外還需要針對最小化方波的輔助組件成本之間的進(jìn)行平衡。
碳化硅(SiC)在太陽能發(fā)電應(yīng)用中比硅具有多種優(yōu)勢,其擊穿電壓是傳統(tǒng)硅的十倍以上, SiC器件還具有比硅更低的導(dǎo)通電阻,柵極電荷和反向恢復(fù)電荷特性,以及更高的熱導(dǎo)率。這些特性意味著SiC器件可以在比硅等效器件更高的電壓,頻率和電流下切換,同時更有效地管理散熱。
硅MOSFET廣泛用于高達(dá)300V的開關(guān)應(yīng)用中,高于該電壓時,器件的導(dǎo)通電阻上升,設(shè)計者不得不轉(zhuǎn)向較慢的雙極器件。 SiC的高擊穿電壓意味著它可以用來制造比硅中可能的電壓高得多的MOSFET,同時保留了低壓硅器件的快速開關(guān)速度優(yōu)勢。開關(guān)性能也相對獨立于溫度,從而在系統(tǒng)升溫時實現(xiàn)穩(wěn)定的性能。
SiC的導(dǎo)熱系數(shù)也是硅的三倍,可以在更高的溫度下運行。硅在175℃左右就無法正常運行,甚至在200攝氏度時直接會變成導(dǎo)體。而SiC直到1000℃左右才發(fā)生這種情況??梢酝ㄟ^兩種方式利用SiC的熱特性。首先,它可以用于制造功率轉(zhuǎn)換器,而該轉(zhuǎn)換器所需的冷卻系統(tǒng)要少于等效的硅系統(tǒng)。另外,SiC在較高溫度下的穩(wěn)定運行可用于空間非常寶貴的情況下制造密集的電源轉(zhuǎn)換系統(tǒng),例如車輛和蜂窩基站。
這些優(yōu)勢在太陽能轉(zhuǎn)換效率更高的功率升壓電路中發(fā)揮了重要作用。該電路設(shè)計為使太陽能電池陣列的輸出阻抗(隨入射光的水平而變化)與逆變器所需的輸入阻抗相匹配,以實現(xiàn)最佳的轉(zhuǎn)換。
最左圖顯示了成本最低的方法,該方法使用硅二極管和MOSFET。如中圖所示,第一個優(yōu)化方案是用SiC版本取代硅二極管,這將提高電路的功率密度和轉(zhuǎn)換效率,從而降低系統(tǒng)成本。如右圖所示,也可以用SiC等效替代硅MOSFET,這為設(shè)計人員提供了更多的開關(guān)頻率選擇,從而進(jìn)一步提高了電路的轉(zhuǎn)換效率和功率密度。
還有許多采用熟悉的D2PAK和TO247格式的1200V SiC MOSFET,典型RDSon低至20mW。
對于那些想要在太陽能光伏裝置中利用SiC的人,安森美半導(dǎo)體還開發(fā)了一系列兩通道或三通道的SiC升壓模塊,用于太陽能逆變器。
<p style="padding: 0px; margin: 0px 0px 20px; position: relative; font-family: " helvetica="" neue",="" helvetica,="" "hiragino="" sans="" gb",="" pinghei,="" "pingfang="" sc",="" stheitisc-light,="" "microsoft="" yahei",="" "lantinghei="" arial,="" sans-serif;="" max-width:="" 100%;="" color:="" rgb(119,="" 119,="" 119);="" font-size:="" 16px;"="">SiC功率器件比硅替代品具有許多優(yōu)勢,包括其切換高壓的能力以及高速,低損耗和良好熱性能的電流。盡管目前它們在同類基礎(chǔ)上可能比硅產(chǎn)品更貴(如果可以使用硅替代產(chǎn)品),但它們在系統(tǒng)內(nèi)的良好性能可以帶來總成本的節(jié)省,例如散熱成本,面積成本等。然后是效率問題,如果部署SiC可以提高2%的效率,那將產(chǎn)生額外的10GW電能。